Thermochemistry: Entropy Worksheet

1. Are the following processes are spontaneous?		
(a) the melting of ice cubes at -5°C and 1 atm of pressure		
(b) dissolving of sugar in a cup of hot coffee		
(c) formation of CH ₄ and O ₂ molecules from CO ₂ and H ₂ O at 298 K and 1 atm		
2. How does the entropy of the system change (increase or decrease) when each of the following occurs?		
(a) a liquid vaporizes (c) a gas liquefies		
(b) a solid melts (d) a solid dissolves in water		
3. Which process (melting or vaporization) shown below would be expected to show the larger increase in entropy? <u>Explain</u> .		
$M(s) \rightarrow M(l)$ $M(l) \rightarrow M(g)$		
. What do you expect for the sign of ΔS if two moles of gaseous reactants are converted into three moles of gaseous products?		
i. In a certain chemical reaction, two gases combine to form a solid product. What is the sign of ΔS ?		
6. Without using a reference sheet of thermochemical values, predict the sign of the entropy change of the system for each of the following reactions.		
(a) CO (g) + 2 H ₂ (g) \rightarrow CH ₄ O (l) $\Delta S < 0$ $\Delta S > 0$		
(b) $\operatorname{Zn}(s) + 2 \operatorname{HCl}(aq) \rightarrow \operatorname{ZnCl}_2(aq) + \operatorname{H}_2(g)$ $\Delta S < 0$ $\Delta S > 0$		
(c) FeCl ₂ (s) + H ₂ (g) \rightarrow Fe(s) + 2 HCl(g) $\Delta S < 0$ $\Delta S > 0$		

Key Formula: $\Delta S^{\circ}_{rxn} = \Sigma S^{\circ} (Products) - \Sigma S^{\circ} (Reactants)$

7. Use the chart of S^o values to calculate Δ S^o values for the following reactions.

(a)
$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

$$\Delta S^0 =$$

Does the sign make sense? Why?

(b)
$$N_2O_4(g) \rightarrow 2 NO_2(g)$$

$$\Delta S^0 =$$

Does the sign make sense? Why?

(c)
$$Be(OH)_2(s) \rightarrow BeO(s) + H_2O(g)$$

$$\Delta S^0 =$$

Does the sign make sense? Why?

(d)
$$2 \text{ CH}_3\text{OH } (g) + 3 \text{ O}_2 (g) \rightarrow 2 \text{ CO}_2 (g) + 4 \text{ H}_2\text{O} (g)$$

$$\Delta S^{0} =$$

Does the sign makes sense? Why?

(e)
$$2 \text{ Al (s)} + 3 \text{ Cl}_2 \text{ (g)} \rightarrow 2 \text{ AlCl}_3 \text{ (s)}$$

$$\Delta S^0 =$$

Does the sign makes sense? Why?

S values	Joules/Kelvin-mole
Al (s)	28.32
AlCl ₃ (s)	109.29
Be(OH) ₂ (s)	47
C ₂ H ₄ (g)	185
C ₂ H ₆ (g)	229.5
CH₃OH (g)	240
CO ₂ (g)	214
Cl ₂ (g)	222.957
H ₂ (g)	131
H ₂ O (g)	189
N_2O_4 (g)	304
NO ₂ (g)	240

205

O₂ (g)